Tau is enriched on dynamic microtubules in the distal region of growing axons.

نویسندگان

  • M M Black
  • T Slaughter
  • S Moshiach
  • M Obrocka
  • I Fischer
چکیده

It is widely held that tau determines the stability of microtubules in growing axons, although direct evidence supporting this hypothesis is lacking. Previous studies have shown that the microtubule polymer in the distal axon and growth cone is the most dynamic of growing axons; it turns over more rapidly and is more sensitive to microtubule depolymerizing drugs than the polymer situated proximally. We reasoned that if the stability of axonal microtubules is directly related to their content of tau, then the polymer in the distal axon should have less tau than the polymer in the proximal axon. We tested this proposition by measuring the relative tau content of microtubule along growing axons of cultured sympathetic neurons immunostained for tau and tubulin. Our results show that the tau content of microtubules varies along the axon, but in the opposite way predicted. Specifically, the relative tau content of microtubules increases progressively along the axon to reach a peak near the growth cone that is severalfold greater than that observed proximally. Thus, tau is most enriched on the most dynamic polymer of the axon. We also show that the gradient in tau content of microtubules does not generate corresponding gradients in the extent of tubulin assembly or in the sensitivity of axonal microtubules to nocodazole. On the basis of these findings, we propose that tau in growing axons has functions other than promoting microtubule assembly and stability and the key sites for these functions are the distal axon and growth cone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Swimming against the tide: mobility of the microtubule-associated protein tau in neurons.

Long-haul transport along microtubules is crucial for neuronal polarity, and transport defects cause neurodegeneration. Tau protein stabilizes microtubule tracks, but in Alzheimer's disease it aggregates and becomes missorted into the somatodendritic compartment. Tau can inhibit axonal transport by obstructing motors on microtubules, yet tau itself can still move into axons. We therefore invest...

متن کامل

The distribution of tau in the mammalian central nervous system

We have determined the biochemical and immunocytochemical localization of the heterogeneous microtubule-associated protein tau using a monoclonal antibody that binds to all of the tau polypeptides in both bovine and rat brain. Using immunoblot assays and competitive enzyme-linked immunosorbent assays, we have shown tau to be more abundant in bovine white matter extracts and microtubules than in...

متن کامل

Acute inactivation of tau has no effect on dynamics of microtubules in growing axons of cultured sympathetic neurons.

Tau is a developmentally regulated microtubule (MT)-associated protein in neurons that has been implicated in neuronal morphogenesis. On the basis of test tube studies, tau has been proposed to function in axon growth by stabilizing MTs and thereby promoting MT assembly. We have tested this hypothesis by examining the effects of acute inactivation of tau on axonal MTs. Tau was inactivated by mi...

متن کامل

Spastin interacts with the centrosomal protein NA14, and is enriched in the spindle pole, the midbody and the distal axon.

Hereditary spastic paraplegia (HSP) is characterized by the specific retrograde degeneration of the longest axons in the central nervous system, the corticospinal tracts. The gene most frequently involved in autosomal dominant cases of this disease, SPG4, encodes spastin, an ATPase belonging to the AAA family. AAA proteins are thought to exert their function by the energy-dependent rearrangemen...

متن کامل

Three distinct axonal transport rates for tau, tubulin, and other microtubule-associated proteins: evidence for dynamic interactions of tau with microtubules in vivo.

Microtubule-associated proteins (MAPs), such as tau, modulate neuronal shape and process outgrowth by influencing the stability and organization of microtubules. The dynamic nature of MAP-microtubule interactions in vivo, however, is poorly understood. Here, we have assessed the stability of these interactions by investigating the synthesis and axoplasmic transport of tau in relation to that of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 16 11  شماره 

صفحات  -

تاریخ انتشار 1996